A plot matrix to display the results of partial association analyses. Upper-triangle contains scatter-plot matrix between each pair of response variables. Lower-triangle contains the partial correlation coefficients adjusted by covariates.
Arguments
- x
The object in "PAsso" class that is generated by "PAsso" or "test".
- color
The color of points.
- shape
The shapre of points. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")
- size
The size of points. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")
- alpha
The value to make the points transparent. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")
- ...
Additional optional arguments to be passed onto.
Details
A pairwise plot matrix reveals the partial association between ordinal variables.
All the plots are based on surrogate residuals generated from "resides"
function.
Graphics are designed based on ggplot2
and "GGally"
.
Examples
data(ANES2016)
summary(ANES2016)
#> age edu.year education income.num
#> Min. :18.00 Min. : 8.00 BAdeg :579 Min. : 5.0
#> 1st Qu.:37.00 1st Qu.:14.00 CCdeg :327 1st Qu.: 37.5
#> Median :53.00 Median :15.00 Coll :447 Median : 67.5
#> Mean :51.25 Mean :15.52 HS :307 Mean : 81.9
#> 3rd Qu.:65.00 3rd Qu.:17.00 HSdrop: 70 3rd Qu.:105.0
#> Max. :90.00 Max. :19.00 MAdeg :440 Max. :250.0
#> MS : 18
#> income PID selfLR
#> (21) 21. $80,000-$89,999 : 138 Min. :1.000 Min. :1.000
#> (24) 24. $110,000-$124,999: 123 1st Qu.:2.000 1st Qu.:3.000
#> (17) 17. $60,000-$64,999 : 116 Median :4.000 Median :4.000
#> (15) 15. $50,000-$54,999 : 114 Mean :3.947 Mean :4.158
#> (27) 27. $175,000-$249,999: 112 3rd Qu.:6.000 3rd Qu.:6.000
#> (23) 23. $100,000-$109,999: 111 Max. :7.000 Max. :7.000
#> (Other) :1474
#> TrumpLR ClinLR PreVote PreVote.num
#> Min. :1.000 Min. :1.000 DonaldTrump :1065 Min. :0.0000
#> 1st Qu.:5.000 1st Qu.:1.000 HillaryClinton:1123 1st Qu.:0.0000
#> Median :6.000 Median :2.000 Median :0.0000
#> Mean :5.261 Mean :2.415 Mean :0.4867
#> 3rd Qu.:6.000 3rd Qu.:3.000 3rd Qu.:1.0000
#> Max. :7.000 Max. :7.000 Max. :1.0000
#>
#> WeightforPreVote
#> Min. :0.1100
#> 1st Qu.:0.5759
#> Median :0.8071
#> Mean :0.9482
#> 3rd Qu.:1.1347
#> Max. :6.8139
#>
PAsso_2v <- PAsso(responses = c("PreVote.num", "PID"),
adjustments = c("income.num", "age", "edu.year"),
data = ANES2016)
plot(PAsso_2v)