A plot matrix to display the results of partial association analyses. Upper-triangle contains scatter-plot matrix between each pair of response variables. Lower-triangle contains the partial correlation coefficients adjusted by covariates.
Arguments
- x
The object in "PAsso" class that is generated by "PAsso" or "test".
- color
The color of points.
- shape
The shapre of points. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")- size
The size of points. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")- alpha
The value to make the points transparent. For more details see the help vignette:
vignette("ggplot2-specs", package = "ggplot2")- ...
Additional optional arguments to be passed onto.
Details
A pairwise plot matrix reveals the partial association between ordinal variables.
All the plots are based on surrogate residuals generated from "resides" function.
Graphics are designed based on ggplot2 and "GGally".
Examples
data(ANES2016)
summary(ANES2016)
#> age edu.year education income.num
#> Min. :18.00 Min. : 8.00 BAdeg :579 Min. : 5.0
#> 1st Qu.:37.00 1st Qu.:14.00 CCdeg :327 1st Qu.: 37.5
#> Median :53.00 Median :15.00 Coll :447 Median : 67.5
#> Mean :51.25 Mean :15.52 HS :307 Mean : 81.9
#> 3rd Qu.:65.00 3rd Qu.:17.00 HSdrop: 70 3rd Qu.:105.0
#> Max. :90.00 Max. :19.00 MAdeg :440 Max. :250.0
#> MS : 18
#> income PID selfLR
#> (21) 21. $80,000-$89,999 : 138 Min. :1.000 Min. :1.000
#> (24) 24. $110,000-$124,999: 123 1st Qu.:2.000 1st Qu.:3.000
#> (17) 17. $60,000-$64,999 : 116 Median :4.000 Median :4.000
#> (15) 15. $50,000-$54,999 : 114 Mean :3.947 Mean :4.158
#> (27) 27. $175,000-$249,999: 112 3rd Qu.:6.000 3rd Qu.:6.000
#> (23) 23. $100,000-$109,999: 111 Max. :7.000 Max. :7.000
#> (Other) :1474
#> TrumpLR ClinLR PreVote PreVote.num
#> Min. :1.000 Min. :1.000 DonaldTrump :1065 Min. :0.0000
#> 1st Qu.:5.000 1st Qu.:1.000 HillaryClinton:1123 1st Qu.:0.0000
#> Median :6.000 Median :2.000 Median :0.0000
#> Mean :5.261 Mean :2.415 Mean :0.4867
#> 3rd Qu.:6.000 3rd Qu.:3.000 3rd Qu.:1.0000
#> Max. :7.000 Max. :7.000 Max. :1.0000
#>
#> WeightforPreVote
#> Min. :0.1100
#> 1st Qu.:0.5759
#> Median :0.8071
#> Mean :0.9482
#> 3rd Qu.:1.1347
#> Max. :6.8139
#>
PAsso_2v <- PAsso(responses = c("PreVote.num", "PID"),
adjustments = c("income.num", "age", "edu.year"),
data = ANES2016)
plot(PAsso_2v)