Welcome to Data Wrangling!

o (Check the BANA /7025 HW Groups In Canvas,
to see which group number you belong to.
Find your group’s number and sit there. (Please
introduce yourself to your group.)

« Download the material for today's class on the
course webpsite

(https://xiaoruizhu.github.io/data-
wrangling/week-1).

DATA WRANGLING WITH R

Welcome!

l| ""'
ODUCTIONS
N R

FIRST THINGS FIRST...

Please call me Xiaorul or Jeremy.

| DON“T-THINK SO!

immsnealtn

INTELLIGENCE APPLIED.

IMS Health & Quintiles are now

IQVIA

In a previous life...

PennState

COURSE OBJECTIVES

« Perform your data analysis in a literate programming environment

« Import and manage structured and unstructured data

« Manipulate, transtform, and summarize your data

« JoIn disparate data sources

« Methodically explore and visualize your data

« Perform iterative functions
« \Write your own functions

« Get an introduction to machine learning
2all with R!

//JV

Import — Tidy — Transform

Visualise

Program

[ots of hands-on coding exercises

You will be overwhelmed!

Strong proponent of
collaborative work!

these modules will also prepare you for your final project.

https://xiaoruizhu.github.io/data-wrangling/

CLASS MATERIAL

o All material online

3. The in-class small group work will teach you to work on a coding task e |utoria | S, resources, &

collaboratively and within a constrained time limit and also teach you to

assess other people’s code.

Material

All required classroom material will be provided in class or online. Any

exercises
« Any info regarding class

Prep

recommended yet optional material will also be provided in the classroom notes.

Schedule

Session

1

Description

Introduction &
Intro to data wrangling, R, and course outline
Managing your workflow and reproducibility
First Date Guidelines for Data &
Importing data

Understanding the basics of your data

Data Structures & Cleaning &
Understanding data structures

Tidying & preparing data for analysis

Module 1

Welcome to the first session! This first module will focus on making sure
everyone is on the same page regarding the syllabus, project deliverables, and
other administrative details. We will also make sure you are up and running with
R, RStudio, and Slack.

Class Prep

Please read & work through the following prior to our first class.

Syllabus

If you have not already done so, be sure to read through the syllabus so that you
understand the structure of my classes, the tentative schedule, grading policies,
and other pertinent details.

Communication

Slack will replace e-mail and Blackboard for our course. You will receive an
invitation to the WFU R slack team. You may wish to install one of the apps. If
you have any questions or concerns your first step should be to go to Slack and
post your issue. You and your classmates should be monitoring slack to help
each other out. In addition, I will also be watching slack and will chime in when
necessary but my hope is that this will be a social process where everyone
contributes to knowledge advancement.

» Watch and read the introductory material to get started with Slack here.

* You can also read this introduction to Slack from one of Kris Shaffer’s
courses (although this is a completely different course and slack team it
provides a nice introduction that you might find useful).

» Sign into the Slack team and post a witty comment in the Random channel.

In-Class Material

You can download the materials for class here: &

https://uc-r.github.io

CLASS GRADING

Engagement 10% Homework Assignments 20%

« Must be completed by Mon @

Qam
« Group homeworks!

e Submit via Canvas

e |N class discussion
e« Canvas discussions
« Small group activiti

Mid-term Project Eval 20% Final Project 50%

« HTML report via R Markdow —ully reproducible HTML report

. Completes items 1.1-3.5 of t mports, cleans, prepares,
orading rubric explores publicly available data

. Helps to build your final project + Helps to build your portfolio

Week

Date

Oct 18

Oct 25

Nov 1

Nov 8

Nov 15

Nov 22

Nov 29

TENTATIVE SCHEDULE

Topic

Introduction & Base R
e Intro to the course, R, and RStudio
e Base R and Data Cleaning

First Date Guidelines for Data
e Reproducible documents and workflow management
e Importing data and getting to know it

Tidy Data and Data Manipulation
e Tidying & preparing data for analysis
e Data manipulation

Data Transformation
e Relational data
e |_everaging the Tidyverse to simplify data wrangling

Data Visualization
e Data visualizations

Creating Efficient Code
e Control statements and iterations
e \Writing functions

Introduction to Applied Modeling
e Unsupervised learning
e Supervised learning

Readings to complete
BEFORE class —

Homework #1
(Due Nov 1 @ 9AM)

Chapter 27 of R for Data Science (R4DS),
sections 27.1 through 27.5

Homework #2
(Due Nov 8 @ 9AM)

Chapter 12 of R4DS, sections 12.1 through 12.5
Chapter 5 of R4DS, sections 5.1 through 5.4

Mid-term Project
Evaluation
(Due Nov 15 @ 12:50PM)

Chapter 5 of R4DS, sections 5.5 through 5.7

Homework #3

Chapter 3 of R4DS, all sections (Due Nov 22 @ 9AM)

Chapter 19 of R4DS, sections 19.1 through 19.6 Homework #4
Chapter 21 of R4DS, sections 21.1 through 21.5 (Due Nov 29 @ 9AM)

Final Project Due
(Due Dec 04 @ 11:59PM)

Chapter 22 of R4DS, all sections
Chapter 23 of R4DS, all sections

TENTATIVE SCHEDULE

Readings to complete

Week Date Topic ue
| BEFORE class —
Introduction & Base R
1 Oct 18 e Intro to the course, R, and RStudio
; - WOork #1
2 /’ Visualise 1@ 9AM)
3 . . 'Work #2
Import — Tidy — Transform /8 @ 9AM)
'm Project
4 luation
5@ 12:50PM)
Wwork #3
5 Understand 22 @ 9AM)
Program »
6 Nov 22 e Control statements and iterations ® UlidpLlEl LY Ul 4D, SELLIVIIS 1Y.1 LT UUyil 19.0 unniceWOr

o _ e Chapter 21 of R4DS, sections 21.1 through 21.5 Due Nov 29 9AM
e Writing functions (@)

Introduction to Applied Modeling
7 Nov 29 e Unsupervised learning
e Supervised learning

e Chapter 22 of R4DS, all sections Final Project Due
o Chapter 23 of R4DS, all sections (Due Dec 04 @ 11:59PM)

COMMUNICATION

Teams (and Canvas)

« Different channels for different weeks

e [eams Is the Tirst place to go to ask questions
e Share code, scripts, Tiles, resources

D R =T LN NN R N

« | check multiple times per day but am not on
continuously

Ble\Wis

grapr
recorn

‘R

load and install R, a free software environment for statist
ics from CRAN, the Comprehensive R Archive Network. [t Is highly

PROGRAMMING & ANALYSIS

mended to

syster

1. Go

4l

ical computing and

msta | a precompiled binary distribution for your operating

n: follow these Iinstructions:

to https://cran.r-project.org/

7. Click "Download R for Mac/Windows”

3. Do

e WWINC

o« V

wnload the

dC USErs s

4. Fo

low the Ins

appropriate file:

oOWS users click Base, and downloac
Kg that

ect the file R-3.X.X.p

tructions of the instal

cr.

the Installer for the latest R version
aligns with your OS version

PROGRAMMING & ANALYSIS

nstall RStudio’s
bowerful user inte

.Stud|o

face
nave to install another s

1. Go to RStudio for desktop
https://www.rstudio.comr

- (stands for integrated development environment), a

‘or R. RStudio includes a text editor, so you do not
tand-alone editor. Follow these instructions:

/products/rstudio/download/

2. Select the install file for your OS
3. Follow the instructions of the installer.

There are other R |

installing RStudio ¢l

DE’

nowever, | have four

s available:
d RStudio to be my preferred route. When you are done
iIck on the icon.

-macs, Microsoft R Open, Notepad++, etc;

QUESTIONS ABOU T THE CLASS?

FUNDAMEN TALS

OVERVIEW OF THE RSTUDIO IDE

Script files
- Saves your script
- Allows code & comments
- Can have multiple files
open at a time

Console/Command line
- Can use as calculator
- Does not save code
- This is where your output
is displayed

~[Desktop/Personal/Academia/Learning Curve R Package - RStudio

Environment History

(@ initial_functions.R » |] plot_functions.R »
&1 Source on Save QL -

'

- = = | | [#*Import Dataset~ | @
231

232 }

233

234

235 # Provides the summary for the block containing units m through n, n > m

236 # t = time for firsts unmit

237 # m = lower bound unit of production block

238 # n = upper bound unit of production block

239 # r = learning curve rate

248 ~ block_summary <- function(t, m, n, r, na.rm = FALSE){

241

242 - if(lis.numericCt) | lis.numeric(m) | lis.numeric(n) | !is.numeric(r)){

243 stop('This function only works for numeric inputs!hn’,

244 "You have provided objects of the following classes:\n’',

245 'ty ', class(t), "wn',

246 'm: ', class(n), "\n',

247 'n: ', class(n), "\n',

248 'r: ', class(r))

249 } ots

258 T . -
276:20 block_summary(t, m, n, r, na.rm) = R Script = —

"} Global Environment -

unctions

[PR . - - - - -

- S = | &l

R: Arithmetic Mean = |

Console ~/Desktop/Personal /Academia/Learning Curve R Package/]

mean {base}

% block hours®
3668.436 . .
[1] 4 Arithmetic Mean

$ midpoint unit’

[1] 44.83189 Description
$ midpoint hours’ Generic function for the (trimmed) arithmetic mean.
[1] 48.31249
Usage
> 7sum
=M+ n MEATN (X, sa4)
[1] 116

m+n * tAr ## Default 53 method:
:E1] 355 . 3082 mean(®x, trim = 0, na.rm = FALSE, ...])

= Arguments

block_summary function r, na.rm = FALSE)
cum_appx function r, na.rm = FALSE)
cum_exact function r, na.rm = FALSE)
le_rate function FALSE)
midpoint function na.rm = FALSE)
natural_slope function FALSE)
unit_curve function n, r, na.rm = FALSE)

— Ll W ol e

[]
= - =8 | [A Go to fle/functior ~= = Addins = & Learning Curve R Package =

Workspace environment
- Holds your objects
- Can review history

R gl B B Bl B

-

= Misc - Displays:

Ll ' - files in working
directory
R Documentation - plots when produced

- help files/search

Thorough tutorial regarding the RStudio console:
httn://dss princeton edu/trainine/RStudio101 ndf

http://dss.princeton.edu/training/RStudio101.pdf

THE RSTUDIO CONSOLE

Can type commands, arithmetic, ____ ..
functions, and other things here -

02
N > 4 4+ 3A2 - 2%8
DOES NOT save code for future ®™23 .
> test_variable %% 3

RStudio sessions S

> symbol means the command
you typed begins here

The [1] means the first value of
the command’s results begins
nere

=]

YOUR TURN!

Type the following command into the console. What does the : operator In
R do?

2:173
Type exactly what you see below in the console and then press Return.
table(irisSSpecies

Then type a right parenthesis and press Return. What's happening?

ending with 1/3. (What do the numbers in
brackets mean?)

Console

> 2:173

[1]
(21]
(41]
(01]
(81]
101
121
141
161

2
22
42
62
82

102
122
142
162

SOLUTION

1. Create a vector of integers starting at 2 and

Jobs

3 4 5
23 24 25
43 44 45
63 04 065
83 84 85

103 104 105
123 124 125
143 144 145
163 164 165

0
260
46
00
860

106
126
140
166

/8 9
20 28 29
4/ 48 49
6/ ©08 09
8/ 88 89

107 108 109
127 128 129
147 148 149
167 168 169

10
30
S0
[4%
90
110
130
150
170

11
31
51
/1
91
111
131
151
171

12
32
52
/2
92
112
132
152
172

13
33
53
/3
93
113
133
153
173

14
34
>4
’4
94

15
35
S35
/5
95

16
36
S0
/0
90

17
37
S5/
4
97

18
38
o8
/8
98

19
39
59
/9
99

114 115 110 117 118 119
134 135 130 137 138 139
154 155 150 157 158 159

20 21
40 41
00 o0l
30 81
100 101
120 121
140 141
160 1ol

=]

SOLUTION

2. R displays a + prompt Iin T
the console If you type an -

> table(iris$Species

incomplete command. _—~"_x>

setosa versicolor virginica

3. No big deal—Comegftéte L))
the command or press
Escape to start a hew
command.

OTHER FUN CONSOLE STUFF

e Use # to comment part of a
iﬂe olf the eﬂ':ire iﬂe (get ready to

comment way too much this semester)

Console lobs

-_-I,I'
= 1+2"3 # yay R follows order of operotions!

11 9
e Use the STOP button on tOp :E i*]i this comments the entire line
of the console (or CTRL + ¢
to cancel a command

e YOU Ccan change preferences
by going to Tools=2>Global
Options

S TORING OBJECTS

Use the <- assignment operator to store objects

as variables.

- [he Tidyverse Style Guide suggests using <-

for the assignment operator instead of =

o Yes, you can use either. But...

o <-1s typically used for assigning values to

variables

o =1s typically used for specifying parameter

values in functions
Type the variable's name and press

display the variable’s value after assi

Retl

oNm

M to
ent

Console lobs

M
|
LA

I_I.

) S L N L
I wn

=0

I—I.
=

R A s B

https://style.tidyverse.org/syntax.html#assignment

MORE ON STORING OBJECTS

Variables ap
assignment

pear In the Environment pane after

Variable names must:

o Begin with a letter or a period (there’s more to

this)
o Only con
undersco

o Reserved words in R cannot be used (e.g., TRU

Tidyverse Style Guide: use snake case for variable

NAIMmeESs

ain letters, digits, periods, and
es

Environment History Files Connections Packages Help
F
=* = | Z#*Import Dataset ~ | # Lizt =

] Global Environment =
Values

https://en.wikipedia.org/wiki/Snake_case

e RIS case sensitive!

—VEN MORE ON STORING OBJECTS

« Keyboard shortcut for the <-
assignment operator: ALT + - console | Jobs

« R overwrites variable names [1] 19

[11 "p™ "x" "y"
e Use Ig() to |list all iject names > rmClist = 1sQ)) # be careful with this!

= |

« Use rm() to remove objects

=]

YOUR TURN!

1. Create a vector of integers from 1 to 30 (inclusive). Call it
integer vector.

2. Use the command c(0,1) to create a separate two-element
vector consisting of O and 1. Call it binary flag. (What
does the c() function do?)

3. Multiply your two vectors. What do you notice?

SOLUTION

Console lobs

° = I:lﬂtE!gE!r"_"l."'E![:t'::'rﬂ - - l: 3@
= binary_flag =- c(@,1)

(1] @ 2 @ 4 @ o © & ©10 0 1. @ 14 @
[16] 16 @ 18 @ 20 © 22 © 24 0@ 2o @ 28 @ 3@

= |

3. R performs element-
wise execution, recycling
vectors as heeded.

=]

~UNCTTONS

e [ype the function name and enter
value(s)/data in the parentheses

Console Jobs

e

. round(2.71828)
« Data passed into a function is called the [1] 3

function’s argument :Eﬁdg_lééﬂ%
o Arguments can be results from Eﬁ"%”dﬂgdﬂ:mﬂ

another function ~ round(2.71828, digits = 2D
o Use = to specity names of [1] 2.72

arguments, especially with multiple - |

arguments for readability/QA

MORE ON FUNCTION ARGUMENTS

¢ R yelsatyou throws an error when
VOU specify an unknown argument

Console Jobs []

o
. = 5d(1:1@, digits = 3
¢ US@ args() tO |OO|< Up d]CU ﬂC’EIOﬂS Er*rS"UE 1N Sd{i?iﬁ? dig%:ﬂ = 3) : unused argument (d1

gits = 3)
= d
arguments Funeson %.;, na.rm = FALSE)
NULL
™
« Unless you specity arguments by =

name, R matches values to
arguments In the function by order

GETTING HELP

provides details for specific function

help(sgrt) OR ?sqgrt

provides examples for said function

example(sqrt)

search help documentation if you forget the function’s name

27sqr

External to R:
Google: just add "with R" at the end of any search.

Stack Overflow: a searchable Q&A site oriented toward programming issues. /5% of my answers come from
SO

Cross Validated: a searchable Q&A site oriented toward statistical analysis.
R-bloggers: a central hub of content from over 500 bloggers who provide news and tutorials about R.

https://www.google.com/
http://stackoverflow.com/
http://stats.stackexchange.com/

YOUR TURN!

1. Look at documentation for the quantile function. What
does the na.rm argument do?

2. Use the quantile function to find the 25t and 75t
percentiles of the integers 1 through 29 /.

Console Jobs

= fguantile

= quantile(l:29/, probs

Y WY
o 243

=" I

SOLUTION

c(B.25, B.75))

=]

SCRIPTS

« Place code in a script to save for later use/editing/additions

« Open a new script by going to File>New File=>R Script

o Different ways to run code in a script

o Clicking the Run button to execute the line of code the cursor is on (or

the line(s) of code that you high |g|”ted)

o Ctrl + Enter to run the line/block of code that's highlighted or that the
CUrsor Is or

o Run the entire script by pressing the Source button

St | YOUR WORKING DIRECTORY

get your current working directory
getwd()
[1] "/Users/Xiaorui/Dropbox/UC/BANA7025"

set your working directory

setwd("/Users/ Xiaorui/Dropbox/UC/BANA7025")

getwd()
[1] "/Users/ Xiaorui/Dropbox/UC/BANA7025"

Keeping your files organized Is critical

YOUR TURN!

Set your working directory to the “Session 01" folder
you downloaded for this class.

PACKAGES

-verything we've discussed so far is considered "base R”, which means we
do not require additional capabilities to use these functions

Packages are collections of custom functions and objects that extend the
capabilities of base R

-xamples of packages you may have seen already:
o dplyr (useful for data manipulation)
o geplot? (useful for visualization)

INSTALLING PACKAGES

The fundamental unit of shareable code Is the package.

CRAN: 10,000+
Bioconductor: 1,000+
GitHub: Many more plus beta versions for updated packages not yet published

So how do we Install these packages?

install packages from CRAN
install.packages("packagename")

install packages from Bioconductor
source("http://bioconductor.org/biocLite.R") # only required the first time

bioclLite() # only required the first time
biocLite("packagename")

install packages from GitHub

install.packages("devtools") # only required the first time
devtools::install_github("username/packagename")

YOUR TURN!

Install these packages from CRAN:

dplyr
nycflights13

SOLUTION

install.packages("tidyverse")
install.packages("nycflights13")

alternative
install.packages(c(“tidyverse”, “nycflights13”))

For a full list of useful packages see this guide: http://bit.ly/1x9vkzV

http://bit.ly/1x9vkzV

INSTALLED A PACKAGE. NOW
WHAT?

« |nstalling packages simply downloads them onto your hard drive.

« Now you need to load these packages in order to leverage their
capabilities.

« Important difference!
o You only need to install a package once (assuming the package hasn't
changed).
o You need to load a package every time you start an RStudio session.

LOADING PACKAGES

Loading packages:

load the package to use in the current R session
library(tidyverse)

use a particular function within a package without loading the package
stringr::str_replace()

Getting help on packages:

provides details regarding contents of a package
help(package = "tidyr")

list vignettes available for a specific package
vignette(package = "tidyr")
browseVignettes(“KraljicMatrix”)

view specific vignette
vignette(“tidy-data")

READ WARNINGS WHEN LOADING
PACKAGES!

Console Jobs —

~ f

= Library(tidyverse)

-- Attaching packages -----------------------"-"-"-"-""-"-"—"—""-~-~-~-~—- tidyverse 1.2.1 --
v ggplotZ 3.2.1 Vv opurrr

B.3.7
v tibble Z2.1.3 v dplyr ©.8.3
v tidyr ©.8.3 v stringr 1.4.@
v readr 1.3.1 v forcats @.4.0

-- tonflicts ----------------------- - - - - - ------~-~-~-~-~-~—~—- tidyverse_conflicts() --
X dplyr::f1lter() masks stats::filter()
x dplyr::lag() masks stats::lag()

= |

R OBJECTS

WHAT ARE ATOMIC VECTORS?

« [he simplest data

structure In R

« Linear vectors of a single

data type

e Use is.vector() TO test If an

‘omic vect

object Is an a

or

Console Jobs —]

~[

> example_vector <- c(TRUE, FALSE, TRUE, TRUE,
FALSE)

> 1s.vector(example_vector)

[1] TRUE

> |

WHAT ARE ATOMIC VECTORS?

Console Jobs

:O U r (actually there are six) tVDQS Of ~/

Atomic vectors > example_vector <- c(TRUE, FALSE, TRUE, TRUE, FALSE)
> 1s.vector(example_vector)

[1] TRUE
: > 1s.character(example_vector)
Some R functions (and [17 FALSE
most people) refer to Vector
doubles as numerics f
Atomic
Use is.*() to test if an T
atomic vector Is a certain Numeric
data type A X
Logical Integer Double Character

CREATING VECTORS

Use the c¢() function to combine
values into a vector (or a list)

Can use many operators or
functions to create numeric
VECTLOrsS

ntegers are stored as numerics
oy default. Use an uppercase L
after each integer to store as an
Integer.

character vector

character_vector <- c("Hello", "how",

numeric vector

numeric_vector <- seq(from

to
by

a slick way to ensure

=1,
39,
2)

you create an integer vector

use L after a number

int_vector <- c(1lL, le4lL, -5L)

logical vector

logical_vector <- c(TRUE, FALSE, TRUE)

are

: Ilyou?ll)

QA EVERY DAY! CHECK VECTORS

° US@ \ength() to]Clﬂd Console Jobs
the number of y

elements a vector has > length(humeric_vector)
1] 20
> typeof(int_vector)
» Use typeof() or class() [1] "integer"

> class(logical_vector)

to identity the type of [1] "logical”

atomic vector

YOUR TURN!

L ook at documentation for the runif() function.

In your script for today’s class, create a vector with /5 observations that come from a
uniform distribution with a minimum value of -3 and a maximum value of 14. (Don't
forget to assign this vector to a variable. You pick the name!)

Write functions to examine this vector:
e [S |t an atomic vector?

e \What kind of vector is it?
e How long Is the vector?

SOLUTION

look at documentation
runif

help(runif)

args(runif)

create vector

runif vector <- runif(n = 75,
min = -3,
max = 14)

examine the vector
is.vector(runif vector)

typeof(runif_vector) OR class(runif vector)
length(runif_vector)

AT TRIBUTES

« Attributes are information
yOu can attach to an R object

Console Jobs

« Attributes will not appear -

when displaying an object or » nlp_vector <- c("hello", "how are you")

affect object values Eufft“b“tescnlp—vector)

o Check for attributes with
attributes()

ITHE NAMES ATTRIBUTE

« \View the names of each
element with names()

> names(nlp_vector)
NULL

. Assign or change names with 7 remes(rlp.vector) < C'greeting’, *follomp question’
$hames

(usually) O Cha raCter \/@CtOr [1] "greeting" "followup question”

> names(nlp_vector) <- NULL
> names(nlp_vector)

« Remove value names by
assigning a NULL (missing)
value to names

VECTOR COERCION

« Combining different data Tumeric
types or forcing functions 7

TRUE —> 1

on certain data types FAL75_> 0
results In coercion

logical character

e \Vector coercion in R
always follows a
predetermined procedure

VECTOR COERCION EXAMPLES

-orcing functions on data Vector coercion isn't always
types coerces vectors a bad thing!
Console Jobs Console Jobs
~| ~|
> as.character(43) > # math with logicals
[1] "43" > logical_vector
> as.logical(0) [1] TRUE FALSE TRUE
1] FALSE > sum(logical_vector)
> as.numeric(TRUE) [1] 2
[1] 1 > mean(logical_vector)

[1] @.06660667

FUNDAMENTAL DATA STRUCTURE

e Two-dimensional
array

* Numeric data only

e Use the matrix()
function to create a
matrix

Matrix

Console ~/
> VADeaths

Rural Male Rural Female Urban Male Urban Female
50-54 11.7 8.7 15.4 3.4
55-59 18.1 11.7 24 .3 13.06
00-064 2606.9 20.3 37.0 19.3
05-069 41.0 30.9 54.0 35.1
/0-74 00.0 54 .3 /1.1 50.0
> class(VADeaths)
[1] "matrix"
> nrow(VADeaths)
[1] 5
> ncol(VADeaths)
[1] 4

> dim(VADeaths)
[1] 5 4

YOUR TURN!

. Look at documentation for the matrix() function.

. Create a 5x4 matrix of the integers from 1 to 20, filling by
rows. Save the matrix as a variaple called example_matrix.

. Examine the names, class, and dimensions of this matrix.

documentation for matrix()
?matrix

create the matrix
example matrix <- matrix(
data = 1:20,

nrow =5,
ncol =4,
byrow = TRUE

)

examine attributes
names(example matrix)
class(example matrix)
dim(example matrix)

SOLUTION

FUNDAMENTAL DATA STRUCTURE

LIst
Console ~/

, , > # example of list
One dimension > list(

+ seq(3, 30, 3),

: + letters,
Each element can be its + matrix(1:6, nrow = 2)

own object (a vector, matrix, +)

data frame, or even a list) [[1]1]
[1] 3 6 9 12 15 18 21 24 27 30

Use the list() function to [[2]]

Create a |iSt [1] Ilall 'll'bll IICH Hdll‘ I'lell' II_FH llgll Ilhll‘ "-i_" Ilj'll' 'll'kl'l " 1
[13] Ilmll llnll IIOH Ilpll‘ I'lqll' ”rI" II'SI'I Il_tll' I'Iu" IIV'II' 'II'WI'I
[25] Hyll 'II'ZH

You'll see lists frequently

with linear models [[3]]
[,1] [,2] [,3]
[1,] 1 3 5
[2,] Vi 4 6

C—

FUNDAMENTAL DATA STRUCTURE

ata Frame

Two-dimension version of g Console -

' ' > 1ris_abbreviated

ist (thmk of 3 SpreadSheet) Sepal.Length Sepal.Width Petal.lLength Petal.Width Species
setosda
setosda
setosda
setosda
setosa
setosda
setosda
setosda
setosda
setosda

Named list of vectors with
specific attributes

Each vector become a
column

L Oo00O~NNOUTPRA, WN -
~prphpoupbpvuinnprppu
OCPLhrSOCOP,P,PrOEONO R
WNWWWWwwww
P OPRPAPPOOTEFLDNS U
P FFRFFRPFRPFRPPRPPRPPRPRPRR-
nuphbuprp~NPUTWPEPD
OO OO0
R NNNWRARDNNNNN

Vectors (i.e., columns) must
be the same length in a data
frame

FUNDAMENTAL DATA STRUCTURE

ata Frame

» Use the data.frame() function to create a data frame
* Data frames have a special data.frame class

« Use str() to examine the structure of a data frame

example of data frame
cool df <- data.frame(
columns of data frame
observation = c("a", "b", "c", "d"),
rand _norm_value = rnorm(4),
exclude flag = c(TRUE, FALSE, FALSE, TRUE),
other options for data frame
row.names = NULL,

| > cool_df
stringsAskFactors = FALSE observation rand_norm_value exclude_flag

) 1 a 0.2200598 TRUE

2 b 0.4772280 FALSE
examine data frame 3 C -1.5238578 FALSE
cool df 4 d 2.2312713 TRUE
class(cool df) > class(cool_df)
str(cool_df) [1] "data.frame"

> str(cool_df)

"data.frame': 4 obs. of 3 variables:

$ observation . chr "a" "b" "c" "d"

$ rand_norm_value: num 0.22 0.477 -1.524 2.231
$ exclude_flag : logi TRUE FALSE FALSE TRUE

IMPORTING AND EXPORTING DATA

Importing Data -xporting Data
« Use the read.csv() function to . Use the write.csv() function to
read in .csv files save .csv files to your hard drive
. Other read.” functions exist for . Watch the row names

| | M
various file formats argument!

« \Watch the stringsAskactors

argument!

SIYLE GUIDE

| am a stickler for nicely formatted code

SIYLE GUIDE

Naming scripts:

basic-stuff.r weather-analysis.R
detail.r emerson-text-analysis.R

Which is good, which is bad?

SIYLE GUIDE

Naming scripts:

Bad Good

basic-stuff.r weather-analysis.R
detail.r emerson-text-analysis.R

Which is good, which is bad?

SIYLE GUIDE

Naming objects:

nhamingconvention
namingConvention
NamingConvention

naming_convention
naming.convention

Which is good, which is bad?

SIYLE GUIDE

Naming objects:

Good Bad

nhamingconvention
namingConvention
NamingConvention

naming_convention
naming.convention

Which is good, which is bad?

Organization:

HHHAH B
Download Data
HHHHH BT
lines of code here

HHHHHH o H R
Preprocess Data
HUHHH O’
lines of code here

HHHH R R R
Exploratory Analysis

HHHH R R R
lines of code here

SIYLE GUIDE

ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc

ines of coo

™ ®» ® ® ® ® ® ® ® MO (D @D

nere
nere
nere
nere
nere
nere
nere
nere
nere
nere
nere

nere

Organization:

Good

HHHAH B
Download Data
HHHHH BT
lines of code here

HHHHHH o H R
Preprocess Data
HUHHH O’
lines of code here

HHHH R R R
Exploratory Analysis

HHHH R R R
lines of code here

SIYLE GUIDE

ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc
ines of coc

ines of coo

™ ®» ® ® ® ® ® ® ® MO (D @D

nere
nere
nere
nere
nere
nere
nere
nere
nere
nere
nere

nere

Bad

SIYLE GUIDE

Code spacing:

average<-mean(feet/12+inches,na.rm=TRUE) average <- mean(feet / 12 + inches, na.rm = TRUE)

Which is good, which is bad?

SIYLE GUIDE

Code spacing:

Bad Good

average<-mean(feet/12+inches,na.rm=TRUE) average <- mean(feet / 12 + inches, na.rm = TRUE)

Which is good, which is bad?

WHAT O REMEMBER

FUNCITIONS TO REMEMBER

Operator/Function Description
help(), ?, example() Get help on functions and provide examples
getwd(), setwd() Get and set your working directory
550N Arithmetic
<- Assignment operator
Is(), rm() ist and remove objects in your global environment
install.packages(), library() Install and load packages
vignette() View/list package vignette

