
TODAY’S CLASS

6:00PM – 7:30PM: Joining data (Not with SQL! In R!)

7:45PM – 8:45PM: Leveraging the Tidyverse to Simplify Data 
Wrangling

9:00PM – 9:50PM: Leveraging %>% and the Tidyverse for your 
project



RELATIONAL
DATA

Get Clean Transform

Visualize

Model

Communicate

Understand

Program ☨A modified version of Hadley Wickham’s analytic process



“It’s rare that a data analysis involves only a single table of data. Typically you 
have many tables of data, and you must combine them to answer the questions 
that you’re interested in.”     

- Garrett Grolemund & Hadley Wickham



WHAT IS RELATIONAL DATA?



WHAT IS RELATIONAL DATA?



VERBS

To work with relational data you need verbs that work with 
pairs of tables.  There are three families of verbs designed to 
work with relational data:

• Mutating joins: add new variables to one data frame by matching 

observations in another.

• Filter joins: filter observations from one data frame based on 

whether or not they match an observation in the other table.

• Set operations: treat observations as if they were set elements



VERBS

To work with relational data you need verbs that work with 
pairs of tables.  There are three families of verbs designed to 
work with relational data:

• Mutating joins: add new variables to one data frame by 

matching observations in another.

• Filter joins: filter observations from one data frame based on 

whether or not they match an observation in the other table.

• Set operations: treat observations as if they were set elements



PREREQUISITES



PACKAGE PREREQUISITE

library(nycflights13)

library(tidyverse)

#> Loading tidyverse: dplyr



EXAMPLE DATA PREREQUISITE

x <- tribble(

~key, ~val_x,

1, "x1",

2, "x2",

3, "x3"

)

y <- tribble(

~key, ~val_y,

1, "y1",

2, "y2",

4, "y3"

)



EXERCISE DATA PREREQUISITE
• For nycflights13:

• flights connects to planes via tailnum

• flights connects to airlines via carrier

• flights connects to airports via origin & dest

• flights connects to weather via origin, year, month, day, & hour



MUTATING JOINS
Adding variables



• Simplest type of join

• matches pairs of observations whenever their keys are equal

• keys are variables that connect pairs of tables

INNER JOIN



INNER JOIN

• use by to tell dplyr which variable is the key

• unmatched rows are not included in the result

x %>% inner_join(y, by = "key")

# A tibble: 2 × 3

key val_x val_y

<dbl> <chr> <chr>

1     1    x1    y1

2     2    x2    y2



• Outer joins keep observations that appear in at least one of 

the tables

• There are 3 types of outer joins:

OUTER JOINS   



• Outer joins keep observations that appear in at least one of 

the tables

• There are 3 types of outer joins:

• left join: keeps all observations in x

OUTER JOINS   

Note how missing values get filled in with NA

x %>% left_join(y, by = "key")

# A tibble: 3 × 3

key val_x val_y

<dbl> <chr> <chr>

1     1    x1    y1

2     2    x2    y2

3     3    x3  <NA>



• Outer joins keep observations that appear in at least one of 

the tables

• There are 3 types of outer joins:

•

• right join: keeps all observations in y

OUTER JOINS   

x %>% right_join(y, by = "key")

# A tibble: 3 × 3

key val_x val_y

<dbl> <chr> <chr>

1     1    x1    y1

2     2    x2    y2

3     4  <NA>    y3



• Outer joins keep observations that appear in at least one of the 

tables

• There are 3 types of outer joins:

•

•

• full join: keeps all observations in x and y

OUTER JOINS   

x %>% full_join(y, by = "key")

# A tibble: 4 × 3

key val_x val_y

<dbl> <chr> <chr>

1     1    x1    y1

2     2    x2    y2

3     3    x3  <NA>

4     4  <NA>    y3



COMPARING JOINS   



• What if our key names don’t match?

DEFINING KEYS

x <- tribble(

~key1, ~val_x,

1, "x1",

2, "x2",

3, "x3"

)

y <- tribble(

~key2, ~val_y,

1, "y1",

2, "y2",

4, "y3"

)



• What if our keys don’t match?

DEFINING KEYS

x %>% inner_join(y, by = c("key1" = “key2”))

# A tibble: 2 × 3

key1 val_x val_y

<dbl> <chr> <chr>

1     1    x1    y1

2     2    x2    y2



YOUR TURN!

1. take the flights data and then
a. left join airlines data
b. filter for “Virgin America”
c. group by time_hour
d. summarise data by computing the mean dep_delay
e. identify the top 10 date-times with the highest mean dep_delay

2. Can you figure out how to add the location of the origin and
destination (i.e. the lat and lon) from airports to flights data? Hint: use 
two consecutive left_joins.



SOLUTION

# problem 1

flights %>%

left_join(airlines) %>%

filter(name == "Virgin America") %>%

group_by(time_hour) %>%

summarise(delay = mean(dep_delay, na.rm = TRUE)) %>%

top_n(10, wt = delay) %>% 

arrange(desc(delay))



SOLUTION

# problem 2

flights %>%

left_join(airports, by = c("origin" = "faa")) %>%

left_join(airports, by = c("dest" = "faa")) %>%

select(dest,

origin,

origin_lat = lat.x,

origin_lon = lon.x,

dest_lat = lat.y,

dest_lon = lon.y,

arr_delay)



FILTERING JOINS
Filtering variables based on another data set
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FILTERING JOINS

• Filtering joins affect the observations rather than adding 

variables

• There are 2 types of filtering joins:



FILTERING JOINS

• Filtering joins affect the observations rather than adding 

variables

• There are 2 types of filtering joins:

• semi join: keeps all observations in x that have a match in 

y

x %>% semi_join(y, by = "key")

# A tibble: 2 × 2

key val_x

<dbl> <chr>

1     1    x1

2     2    x2



FILTERING JOINS

• Filtering joins affect the observations rather than adding 

variables

• There are 2 types of filtering joins:

•

• anti join: drops all observations in x that have a match in 

y

x %>% anti_join(y, by = "key")

# A tibble: 1 × 2

key val_x

<dbl> <chr>

1     3    x3



YOUR TURN!

1. How many flights in the flights data have matching planes

metadata (tailnum is your key)?  How many do not? Hint: use 
tally() after your joining functions.

2. Filter the airports data for those airports that do not have 
matching destination values in the flights data (faa and dest are 
your keys).  How many unique airports do you find?  Hint: use 
the distinct() and tally() functions after your joining function.



SOLUTION

# problem 1a ——> 284,170

flights %>% 

semi_join(planes, by = "tailnum") %>%

tally()

# problem 1b ——> 52,606

flights %>% 

anti_join(planes, by = "tailnum") %>%

tally()

# problem 2 —-> 1,357

airports %>% 

anti_join(flights, by = c("faa" = "dest")) %>% 

distinct(faa) %>%

tally()



SET OPERATIONS
Treat observations as set elements



SET OPERATIONS

• I use these least frequently

• Compares entire row in each data set



SET OPERATIONS

• I use these least frequently

• Compares entire row in each data set

• intersect(x, y): return only observations in both x and y.

• union(x, y): return unique observations in x and y.

• setdiff(x, y): return observations in x, but not in y

Illustrate with 
these two data sets

df1 <- tribble(

~x, ~y,

1,  1,

2,  1

)

df2 <- tribble(

~x, ~y,

1,  1,

1,  2

)



SET OPERATIONS

• I use these least frequently

• Compares entire row in each data set

• intersect(x, y): return only observations in both x and y.

•

•

intersect(df1, df2)

# A tibble: 1 × 2

x     y

<dbl> <dbl>

1     1     1

Illustrate with 
these two data sets

~x, ~y,

1,  1,

~x, ~y,

1,  1,



SET OPERATIONS

• I use these least frequently

• Compares entire row in each data set

•

• union(x, y): return unique observations in x and y.

•

Illustrate with 
these two data sets

~x, ~y,

1,  1,

2,  1

~x, ~y,

1,  1,

1,  2

union(df1, df2)

# A tibble: 3 × 2

x     y

<dbl> <dbl>

1     1     2

2     2     1

3     1     1



SET OPERATIONS

• I use these least frequently

• Compares entire row in each data set

•

•

• setdiff(x, y): return observations in x, but not in y

Illustrate with 
these two data sets

~x, ~y,

2,  1setdiff(df1, df2)

# A tibble: 1 × 2

x     y

<dbl> <dbl>

1     2     1



CHALLENGE



Question: In 2014, what was the average O&S costs and end strength numbers for all 
aircraft and missiles systems at Minot AFB?

Answer:

I. Import the ws-programmatics.csv and ws-categorization.csv files in the data 
folder:

II. left join ws-categorization data to ws-programmatics data using Base and MD as 
the keys

III. Filter Base for only MINOT AFB (ND) 
IV. Filter System for only Aircraft or Missile systems
V. Group the data by the System variable
VI. Compute the mean summary statistic for Total_O.S and End_Strength

COMPUTE COSTS & END STRENGTH



SOLUTION
library(tidyverse)

ws_programmatics <- read_csv("data/ws-programmatics.csv")

ws_categorizations <- read_csv("data/ws-categorization.csv")

ws_programmatics %>%

left_join(ws_categorizations) %>%

filter(Base == "MINOT AFB (ND)",

System == "AIRCRAFT" | System == "MISSILES" ) %>%

group_by(System) %>%

summarise(Total_O.S = mean(Total_O.S, na.rm = TRUE),

End_Strength = mean(End_Strength, na.rm = TRUE))

# A tibble: 2 × 3

System Total_O.S End_Strength

<chr>     <dbl>        <dbl>

1 AIRCRAFT  36056921     313.0851

2 MISSILES  48838881     689.1800



WHAT TO REMEMBER



FUNCTIONS TO REMEMBER

Operator/Function Description

inner_join, left_join, right_join, full_join
mutating join:  add new variables to one data frame by 
matching observations in another.

semi_join, anti_join
filtering joins:  filter observations from one data frame 
based on whether or not they match an observation in the 
other table

intersect, union, setdiff
set operations:  treat observations as if they were set 
elements




