
HOUSEKEEPING ITEMS

Midterm Project things to mention:
• Expect a “Thanks for sending!” reply when you send your RPubs

link



TODAY’S CLASS

6:00PM – 7:30PM: Joining data (Not with SQL! In R!)

7:45PM – 8:45PM: Leveraging the Tidyverse to Simplify Data 
Wrangling

9:00PM – 9:50PM: Leveraging %>% and the Tidyverse for your 
project



THIS HOUR: WRANGLING WITH THE TIDYVERSE

Intro: Logicals and Tibbles 1: Strings 2: Factors 3: Dates/Times



HOW THIS IMPROVES DATA SCIENCE PROJECTS



WHAT IS THE TIDYVERSE?

An opinionated collection of 
packages…

designed to simplify data analysis.



PREREQUISITES



PACKAGE PREREQUISITE

library(tidyverse) # core tidyverse includes dplyr, stringr, and forcats

# may need to install the following packages first

library(lubridate)

library(glue)



DATA PREREQUISITE

# go ahead and set your working directory to this week’s folder you downloaded

crime <- read_csv("cincinnati_crimes_20190812.csv")



INTRO: LOGICALS



CREATING BOOLEAN VALUES

# comparison operators create Boolean values

# i.e., TRUE and FALSE

# create Boolean values

2 <= 3

## [1] TRUE

# create a Boolean vector

!is.na(letters[1:15])

## [1]  TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

## [10] TRUE TRUE TRUE TRUE TRUE TRUE

Operator Description
> a > b

>= a >= b
< a< b

<= a <= b
==

(check for equality)
a == b

!=
(check for not equal) a != b

%in%
(check for group 

membership)

a %in% c(a, b, 
c)

is.na() is.na(tailnum)
!is.na() !is.na(tailnum)



LOGICAL VALUES AND DATA TYPES

R’s data type for Boolean values

# values can be logical

typeof(TRUE)

## [1] “logical”

typeof(FALSE)

## [1] “logical”

## vectors can be logical

x <- c(TRUE, NA, FALSE)

typeof(x)

## [1] “logical”

# generation z
crime %>% 
select(INCIDENT_NO, SUSPECT_AGE) %>% 
mutate(gen_z = SUSPECT_AGE %in% c("UNDER 18", "18-25"))

# A tibble: 21,153 x 3
INCIDENT_NO SUSPECT_AGE gen_z
<chr>       <chr>       <lgl>

1 199003291   26-30       FALSE
2 199006697   UNKNOWN     FALSE
3 199002974   18-25       TRUE 
4 199002942   UNKNOWN     FALSE
5 199003557   UNKNOWN     FALSE
6 199001482   UNKNOWN     FALSE
7 199005210   31-40       FALSE
8 199006079   UNKNOWN     FALSE
9 199006287   26-30       FALSE
10 199000792   UNKNOWN     FALSE
# ... with 21,143 more rows

Creating a logical variable (vector) in your 
data set



GENERATING INSIGHTS FROM LOGICALS
Count TRUEs by 
summing a logical 
vector

# quick example

x <- c(8, 4, 5, 1)

x

## [1] TRUE TRUE TRUE FALSE

# How many elements

# satisfy the condition?

sum(x)

## [1] 3

# generation z

crime %>% 

select(INCIDENT_NO, SUSPECT_AGE) %>% 

mutate(gen_z = SUSPECT_AGE %in% c("UNDER 18", "18-25")) %>%

summarize(pct_gen_z = mean(gen_z, na.rm = TRUE))

# A tibble: 1 x 1

pct_gen_z

<dbl>

1     0.176

Find proportion of TRUEs by taking the mean of a 
logical vector



YOUR TURN!

Using our crimes data set:
After grouping by the DAYOFWEEK variable,

1. How many records occurred in the SNA_NEIGHBORHOOD of Clifton?
2. What percentage is this for each group?

BONUS!  Can you calculate the counts and percentages without a mutate 
statement?



SOLUTION
crime %>% 

group_by(DAYOFWEEK) %>% 

mutate(clifton = SNA_NEIGHBORHOOD == "CLIFTON") %>% 

summarize(

num_clifton = sum(clifton, na.rm = TRUE),

num_total = n(),

pct_clifton = mean(clifton, na.rm = TRUE)

)

# A tibble: 8 x 4

DAYOFWEEK num_clifton num_total pct_clifton

<chr>           <int>     <int>       <dbl>

1 FRIDAY             72      3062      0.0235

2 MONDAY             53      3020      0.0175

3 SATURDAY           34      2925      0.0116

4 SUNDAY             39      2883      0.0135

5 THURSDAY           30      2925      0.0103

6 TUESDAY            57      3048      0.0187

7 WEDNESDAY          46      2927      0.0157

8 NA                 26       363      0.0716



SOLUTION WITH BONUS

crime %>% 

group_by(DAYOFWEEK) %>% 

summarize(

num_clifton = sum(SNA_NEIGHBORHOOD == "CLIFTON", na.rm = TRUE),

num_total = n(),

pct_clifton = mean(SNA_NEIGHBORHOOD == "CLIFTON", na.rm = TRUE)

)



INTRO: TIBBLES



TIBBLES ARE UBIQUITOUS!

You’ve worked with tibbles before!
crime %>% 

group_by(DAYOFWEEK) %>% 

mutate(clifton = SNA_NEIGHBORHOOD == "CLIFTON") %>% 

summarize(

num_clifton = sum(clifton, na.rm = TRUE),

num_total = n(),

pct_clifton = mean(clifton, na.rm = TRUE)

)

# A tibble: 8 x 4

DAYOFWEEK num_clifton num_total pct_clifton

<chr>           <int>     <int>       <dbl>

1 FRIDAY             72      3062      0.0235

2 MONDAY             53      3020      0.0175

3 SATURDAY           34      2925      0.0116

4 SUNDAY             39      2883      0.0135

5 THURSDAY           30      2925      0.0103

6 TUESDAY            57      3048      0.0187

7 WEDNESDAY          46      2927      0.0157

8 NA                 26       363      0.0716



WHAT ARE TIBBLES?

From the Tidyverse website:
“A tibble, or tbl_df, is a modern reimagining 
of the data.frame, keeping what time has 
proven to be effective, and throwing out 
what is not.

Tibbles:
• Are data frames, but with edited behaviors
• Never change input data types (e.g., strings 

to factors, characters to numeric)
• Never change variable names
• Never create row names
• Never gonna give you up
• Allow non-syntactic variable names

crime %>%

head(10)

# A tibble: 10 x 40

INSTANCEID INCIDENT_NO DATE_REPORTED DATE_FROM DATE_TO CLSD    UCR DST   BEAT 

<chr>      <chr>       <chr>         <chr>     <chr>   <chr> <dbl> <chr> <chr>

1 92A296AB-~ 199003291   2/16/2019 10~ 2/16/201~ 2/16/2~ J--C~   201 4     5    

2 44ACB102-~ 199006697   4/4/2019 16:~ 4/4/2019~ 4/4/20~ Z--E~  1151 2     1    

3 2CED4B80-~ 199002974   2/12/2019 17~ 2/5/2019~ 2/7/20~ D--V~   201 4     4    

4 EEB41765-~ 199002942   2/12/2019 10~ 2/6/2019~ 2/6/20~ J--C~   201 5     2    

5 F4622DF5-~ 199003557   2/20/2019 15~ 2/19/201~ 2/19/2~ J--C~   600 4     3    

6 EF456ED0-~ 199001482   1/21/2019 11~ 1/20/201~ 1/21/2~ Z--E~   600 4     2    

7 0859E5C0-~ 199005210   3/15/2019 14~ 3/12/201~ 3/12/2~ H--W~  1493 2     2    

8 9B091265-~ 199006079   3/27/2019 4:~ 3/27/201~ 3/27/2~ Z--E~  1400 1     3    

9 D2DAF74C-~ 199006287   3/29/2019 15~ 3/29/201~ 3/29/2~ Z--E~   600 4     2    

10 43EEB437-~ 199000792   1/10/2019 13~ 1/9/2019~ 1/9/20~ J--C~   600 5     1    

# ... with 31 more variables: OFFENSE <chr>, LOCATION <chr>, THEFT_CODE <chr>,

https://tibble.tidyverse.org/


CREATING TIBBLES

Create or coerce into tibble with 
as_tibble()

as_tibble(iris)
# A tibble: 150 x 5

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl>       <dbl>        <dbl>       <dbl> <fct>  

1          5.1         3.5          1.4         0.2 setosa
2          4.9         3            1.4         0.2 setosa
3          4.7         3.2          1.3         0.2 setosa
4          4.6         3.1          1.5         0.2 setosa
5          5           3.6          1.4         0.2 setosa
6          5.4         3.9          1.7         0.4 setosa
7          4.6         3.4          1.4         0.3 setosa
8          5           3.4          1.5         0.2 setosa
9          4.4         2.9          1.4         0.2 setosa

10          4.9         3.1          1.5         0.1 setosa
# ... with 140 more rows

tibble(
division = c("Columbus",

"Nashville",
"Atlanta"),

test_group = 1,
# use backticks for non-syntactical name
`:)_order` = 1:3

)

# A tibble: 3 x 3
division  test_group `:)_order`
<chr>          <dbl>      <int>

1 Columbus           1          1
2 Nashville          1          2
3 Atlanta            1          3

Create tibbles from individual vectors 
(recycling occurs)



DIFFERENCES BETWEEN TIBBLES AND DATA 
FRAMES:

PRINT METHOD

Tibbles ☺

as_tibble(iris)
# A tibble: 150 x 5

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
<dbl>       <dbl>        <dbl>       <dbl> <fct>  

1          5.1         3.5          1.4         0.2 setosa
2          4.9         3            1.4         0.2 setosa
3          4.7         3.2          1.3         0.2 setosa
4          4.6         3.1          1.5         0.2 setosa
5          5           3.6          1.4         0.2 setosa
6          5.4         3.9          1.7         0.4 setosa
7          4.6         3.4          1.4         0.3 setosa
8          5           3.4          1.5         0.2 setosa
9          4.4         2.9          1.4         0.2 setosa

10          4.9         3.1          1.5         0.1 setosa
# ... with 140 more rows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1            5.1         3.5          1.4         0.2     setosa

2            4.9         3.0          1.4         0.2     setosa

3            4.7         3.2          1.3         0.2     setosa

4            4.6         3.1          1.5         0.2     setosa

5            5.0         3.6          1.4         0.2     setosa

6            5.4         3.9          1.7         0.4     setosa

7            4.6         3.4          1.4         0.3     setosa

8            5.0         3.4          1.5         0.2     setosa

9            4.4         2.9          1.4         0.2     setosa

10           4.9         3.1          1.5         0.1     setosa

11           5.4         3.7          1.5         0.2     setosa

12           4.8         3.4          1.6         0.2     setosa

13           4.8         3.0          1.4         0.1     setosa

14           4.3         3.0          1.1         0.1     setosa

15           5.8         4.0          1.2         0.2     setosa

16           5.7         4.4          1.5         0.4     setosa

17           5.4         3.9          1.3         0.4     setosa

18           5.1         3.5          1.4         0.3     setosa

19           5.7         3.8          1.7         0.3     setosa

20           5.1         3.8          1.5         0.3     setosa

21           5.4         3.4          1.7         0.2     setosa

22           5.1         3.7          1.5         0.4     setosa

23           4.6         3.6          1.0         0.2     setosa

24           5.1         3.3          1.7         0.5     setosa

25           4.8         3.4          1.9         0.2     setosa

26           5.0         3.0          1.6         0.2     setosa

27           5.0         3.4          1.6         0.4     setosa

(and it automatically prints 1000 rows)

Base R 



REVIEW: SELECTING COLUMNS FROM 
DATA FRAMES

• Preserve the structure of the output to be the same as the input with
data_frame[column]
➢ Can use a column name in quotes or a column index

• Simplify the structure of the output with data_frame[[column]]
➢ Can use a column name in quotes or a column index

• Simplify the structure of the output to be a smaller structure than the input 
with data_frame$column
➢ Must use a column name with a $



DIFFERENCES BETWEEN TIBBLES AND DATA 
FRAMES:

SUBSETTING AND SIMPLIFYING OUTPUT
Base R: Subsetting data frames with square 
brackets sometimes returns a vector

# matrix subsetting simplifies
cars[, “speed”]
[1]  4  4  7  7  8  9 10 10 10 11 11

[12] 12 12 12 12 13 13 13 13 14 14 14
[23] 14 15 15 15 16 16 17 17 17 18 18
[34] 18 18 19 19 19 20 20 20 20 20 22
[45] 23 24 24 24 24 25

# list subsetting doesn’t simplify
cars[“speed”]
speed

1      4
2      4
3      7
4      7
5      8
6      9

cars %>% 
as_tibble() %>% 
# use the placeholder .
# when piping into [ ] or [[ ]] or $
.[, "speed"]

# A tibble: 50 x 1
speed
<dbl>

1     4
2     4
3     7
4     7
5     8
6     9
7    10
8    10
9    10
10    11
# ... with 40 more rows

Tibbles always return another tibble when 
subsetting with square brackets



FOR MORE INFORMATION

https://tibble.tidyverse.org/

https://tibble.tidyverse.org/


01/ STRINGS



WORKING WITH CHARACTER STRINGS

• Often, we have character strings in 
our data that are long (e.g., 
description fields), messy (e.g., 
manual user input), and/or 
inconsistent

• Working with strings in Base R can 
be frustrating because of syntax 
inconsistencies

• The stringr package allows you to 
work with strings easily



COMMON STRING TASKS WE’RE COVERING

Matching patterns

Leveraging (easier) regular expressions

Extracting characters

Finding lengths

Padding strings

Changing case

Replacing patterns

… and so much more that’s not in this training because strings are crazy



stringr FUNCTIONS

Every stringr function begins with str_

str_sub()

str_count()

str_replace()

str_detect()

str_remove()

…

Check out all 

the options 

with stringr::str_ 

+ tab !



MATCHING PATTERNS WITH str_detect()

str_detect() checks if elements of a 
character vector match a pattern, 
returning a logical vector

# str_detect() searches

# for the pattern

# anywhere in the string

x <- c("apple", "pineapple",

"crabapple", NA, "peach")

# returns one boolean

# value for each element

str_detect(x, "app")

[1]  TRUE  TRUE TRUE NA FALSE

crime %>% 
select(HATE_BIAS) %>% 
mutate(hate_toward_group = str_detect(HATE_BIAS, "ANTI-"))

# A tibble: 21,153 x 2
HATE_BIAS                 hate_toward_group
<chr>                     <lgl>            

1 N--NO BIAS/NOT APPLICABLE FALSE            
2 N--NO BIAS/NOT APPLICABLE FALSE            
3 N--NO BIAS/NOT APPLICABLE FALSE            
4 N--NO BIAS/NOT APPLICABLE FALSE            
5 N--NO BIAS/NOT APPLICABLE FALSE            
6 N--NO BIAS/NOT APPLICABLE FALSE            
7 N--NO BIAS/NOT APPLICABLE FALSE            
8 N--NO BIAS/NOT APPLICABLE FALSE            
9 N--NO BIAS/NOT APPLICABLE FALSE            

10 N--NO BIAS/NOT APPLICABLE FALSE            
# ... with 21,143 more rows

Creating variables with str_detect()



YOUR TURN!

Using our crimes data set and the CLSD variable:
1. How many records have “CLOSED” in the CLSD variable, meaning the case is 

closed?
2. What is the proportion of records that are closed?



SOLUTION

crime %>% 

select(CLSD) %>% 

mutate(closed_case = str_detect(CLSD, "CLOSED")) %>% 

summarize(num_closed = sum(closed_case, na.rm = TRUE),

pct_closed = mean(closed_case, na.rm = TRUE))

# A tibble: 1 x 2

num_closed pct_closed

<int>      <dbl>

1      10269      0.497



SOLUTION PART 2

Question: How 
do I ignore 
case?

crime %>% 

select(CLSD) %>% 

mutate(closed_case = str_detect(CLSD,

regex("cLoSeD", ignore_case = TRUE))) %>% 

summarize(num_closed = sum(closed_case, na.rm = TRUE),

pct_closed = mean(closed_case, na.rm = TRUE))

Answer: Use stringr::regex() (or other stringr functions) to ignore 
case!



YOUR FIRST REGULAR EXPRESSION

• “Some people, when confronted with a problem, think “I know, I’ll use regular 
expressions.”  Now they have two problems.

• Regular expressions are sequences of characters that define a search pattern, 
and can become very complicated quickly.  The stringr package helps to avoid 
complicated regular expressions like:

email_pat = “^([a-z0-9_\\.-]+)@([\\da-z\\.-]+)\\.([a-z\\.]{2,6})$”

• However, regular expressions are convenient sometimes.



YOUR FIRST REGULAR EXPRESSION

# match pattern at beginning of string

crime %>% 

filter(str_detect(SNA_NEIGHBORHOOD, "^MT.")) %>% 

count(SNA_NEIGHBORHOOD, sort = TRUE)

# A tibble: 5 x 2

SNA_NEIGHBORHOOD     n

<chr>            <int>

1 MT. AIRY           563

2 MT. AUBURN         419

3 MT. WASHINGTON     254

4 MT. ADAMS           77

5 MT. LOOKOUT         62

Anchors
Characters Description

^ string begins with

$ string ends with



YOUR FIRST REGULAR EXPRESSION

# match pattern at end of string

crime %>% 

filter(str_detect(SNA_NEIGHBORHOOD, "HILL$")) %>% 

count(SNA_NEIGHBORHOOD, sort = TRUE)

# A tibble: 6 x 2

SNA_NEIGHBORHOOD          n

<chr>                 <int>

1 EAST PRICE HILL        1348

2 WEST PRICE HILL        1197

3 COLLEGE HILL            755

4 BOND HILL               367

5 VILLAGES AT ROLL HILL   265

6 LOWER PRICE HILL         98

Anchors
Characters Description

^ string begins with

$ string ends with



YOUR FIRST REGULAR EXPRESSION

# check for multiple regular expressions
# at the same time
crime %>% 

filter(str_detect(SNA_NEIGHBORHOOD,
"^MT.|HILL$|SOUTH")) %>% 

count(SNA_NEIGHBORHOOD, sort = TRUE)
# A tibble: 13 x 2

SNA_NEIGHBORHOOD          n
<chr>                 <int>

1 EAST PRICE HILL        1348
2 WEST PRICE HILL        1197
3 COLLEGE HILL            755
4 MT. AIRY                563
5 MT. AUBURN              419
6 SOUTH FAIRMOUNT         374
7 BOND HILL               367
8 VILLAGES AT ROLL HILL   265
9 MT. WASHINGTON          254

10 LOWER PRICE HILL         98
11 MT. ADAMS                77
12 MT. LOOKOUT              62
13 SOUTH CUMMINSVILLE       53

Alternatives

Characters Description
| string contains one of these

[  ] string contains any of these
[^  ] string contains anything but 

these
[ - ] string contains in range of



YOUR FIRST REGULAR EXPRESSION

## look for suspect ages in double-digits

crime %>% 

filter(str_detect(SUSPECT_AGE, "^[0-9]{2}")) %>% 

count(SUSPECT_AGE)

# A tibble: 6 x 2

SUSPECT_AGE     n

<chr>       <int>

1 18-25        2652

2 26-30        1724

3 31-40        2031

4 41-50         899

5 51-60         418

6 61-70         137

Quantifiers

Characters Description
a? zero or one
a* zero or more
a+ one or more

a{n} exactly n
a{n, } b or more

a{n, m} between n and m



HUNGRY FOR MORE?

https://stringr.tidyverse.org
/articles/regular-
expressions.html

https://stringr.tidyverse.org/articles/regular-expressions.html


EXTRACTING CHARACTERS WITH str_sub()

Extract location code with defined 
start/end positions

crime %>% 

transmute(LOCATION,

location_code = str_sub(string = LOCATION,

start = 1,

end = 2))

# A tibble: 21,153 x 2

LOCATION                     location_code

<chr>                        <chr>        

1 02-MULTI FAMILY              02           

2 01-SINGLE FAMILY HOME        01           

3 02-MULTI FAMILY APARTMENT    02           

4 29-GAS STATION               29           

5 47-STREET                    47           

6 47-STREET                    47           

7 47-STREET                    47           

8 47-STREET                    47           

9 38-VARIETY/CONVENIENCE STORE 38           

10 02-MULTI FAMILY              02           

# ... with 21,143 more rows

crime %>% 
transmute(ZIP,

last_three = str_sub(ZIP, -3))
# A tibble: 21,153 x 2

ZIP last_three
<dbl> <chr>     

1 45237 237       
2 45206 206       
3 45229 229       
4 45225 225       
5 45229 229       
6 45202 202       
7 45227 227       
8 45202 202       
9 45206 206       

10 45220 220       
# ... with 21,143 more rows

Extract last three digits by counting 
backward from the last character



DATA CLEANING WITH str_length() AND str_pad()

str_length() outputs the number of 
characters a string contains
crime %>%

transmute(ZIP = as.character(ZIP),

num_digits_zip = str_length(ZIP))

# A tibble: 21,153 x 2

ZIP   num_digits_zip

<chr>          <int>

1 45237              5

2 45206              5

3 45229              5

4 45225              5

5 45229              5

6 45202              5

7 45227              5

8 45202              5

9 45206              5

10 45220              5

# ... with 21,143 more rows

crime %>%

transmute(ZIP = as.character(ZIP),

num_digits_zip = str_length(ZIP),

fixed_zip = str_pad(string = ZIP,

width = 5,

side = "right",

pad = "X")) %>% 

filter(num_digits_zip < 5)

ZIP   num_digits_zip fixed_zip

<chr>          <int> <chr>    

1 452                3 452XX    

2 33                 2 33XXX    

3 33                 2 33XXX    

4 33                 2 33XXX 

str_pad() example: right-pad to fill in empty 
digits with Xs



YOUR TURN!
# fill in the blanks!
crime %>% 

# select a few variables
select(HOUR_FROM, ZIP) %>% 

mutate(
# change hour_from to a character
HOUR_FROM = as._________(HOUR_FROM),
# left-pad zeroes to create 24-hour time
HOUR_FROM = str_pad(string = HOUR_FROM,

width = ___,
side = "____",
pad = "___"),

# change zip to a character
ZIP = _________________,
# make if-then statement to right-pad zip codes less than 5 digits
ZIP = if_else(

# check the condition for the if_else function
condition = ___________(ZIP) < ___,
# if less than 5 digits, right-pad an X
true = ____________________________,
# otherwise keep the zip code as-is
false = ZIP)



SOLUTION
# fill in the blanks!
crime %>% 

# select a few variables
select(HOUR_FROM, ZIP) %>% 
mutate(

# change hour_from to a character
HOUR_FROM = as.character(HOUR_FROM),
# left-pad zeroes to create 24-hour time
HOUR_FROM = str_pad(string = HOUR_FROM,

width = 4,
side = "left",
pad = "0"),

# change zip to a character
ZIP = as.character(ZIP),
# make if-then statement to right-pad zip codes less than 5 digits
ZIP = if_else(

# check the condition for the if_else function
condition = str_length(ZIP) < 5,
# if less than 5 digits, right-pad an X
true = str_pad(ZIP, 5, "right", "X"),
# otherwise keep the zip code as-is
false = ZIP)

)



OTHER USEFUL FUNCTIONS FROM stringr

# a lame example vector

x <- c("VEG SOUP", " MIXED VEG/VEG MEDLEY", "bAd NaMe 4 VeG ")

## str_to_lower()--there is also str_to_upper() and str_to_title()

str_to_lower(x)

[1] "veg soup"              " mexed veg/veg medley" "bad name 4 veg " 

## str_trim removes whitespace from the side(s) you specify

str_trim(x)

[1] "VEG SOUP"             "MEXED VEG/VEG MEDLEY" "bAd NaMe 4 VeG" 



OTHER USEFUL FUNCTIONS FROM stringr

Replacing patterns

# same lame example vector
x <- c("VEG SOUP", " MIXED VEG/VEG MEDLEY", "bAd NaMe 4 VeG ")

## str_replace replaces the first matched pattern
str_replace(x,

pattern = "VEG",
replacement = "VEGETABLE")

[1] "VEGETABLE SOUP"  " MIXED VEGETABLE/VEG MEDLEY" "bAd NaMe 4 VeG " 

# str_replace_all replaces all matched patterns
str_replace_all(x,

pattern = "VEG",
replacement = "VEGETABLE")

[1] "VEGETABLE SOUP" " MIXED VEGETABLE/VEGETABLE MEDLEY" "bAd NaMe 4 VeG " 



FOR MORE INFORMATION

https://stringr.tidyverse.org/

https://stringr.tidyverse.org/


BONUS: PASTE STRINGS WITH glue

https://glue.tidyverse.org/

Love pasting strings but hate 
dealing with variables inside strings?  

Check out the glue package!

https://glue.tidyverse.org/


02/ FACTORS



WHY WE CARE ABOUT FACTORS



WORKING WITH FACTORS

• Factors are a useful data structure, 
particularly for modeling and 
visualizations, because they control 
the order of levels

• Working with factors in Base R can 
be frustrating because of syntax 
inconsistencies and a handful of 
missing tools

• The forcats package allows you to 
modify factors with minimal pain



HOW R REPRESENTS AND STORES 
FACTORS

(eyes <- base::factor(x = c("blue", "green", "green"),

levels = c("blue", "brown", "green")))

Factors: R’s representation of categorical data.  Consists of:
• A set of discrete values
• An ordered set of valid levels

Stored as an integer vector with a levels attribute

unclass(eyes)

[1] 1 3 3

attr(,"levels")

[1] "blue"  "brown" "green"



forcats FUNCTIONS AND COMMON TASKS

All forcats functions start with fct_

• fct_relevel()

• fct_recode()

• fct_collapse()

• fct_unique()

Common tasks we’re covering

• Reorder levels

• Recode levels

• Collapse levels

• Temporarily reorder levels

• Reorder levels based on other 
variable(s)

• … and more!



GRAPHING WITHOUT REORDERING FACTOR LEVELS

# create a new data set

age <- crime %>% 

# filter suspect ages simply for readability

filter(SUSPECT_AGE != "UNKNOWN")

# notice how SUSPECT_AGE is a character variable

age %>% count(SUSPECT_AGE)

# A tibble: 8 x 2

SUSPECT_AGE     n

<chr>       <int>

1 18-25        2652

2 26-30        1724

3 31-40        2031

4 41-50         899

5 51-60         418

6 61-70         137

7 OVER 70        33

8 UNDER 18     1068



REORDER LEVELS WITH fct_relevel()
age_releveled <- age %>% 

# fct_relevel() converts characters to factors

mutate(SUSPECT_AGE = fct_relevel(SUSPECT_AGE,

"UNDER 18",

"18-25",

"26-30",

"31-40",

"41-50",

"51-60",

"61-70",

"OVER 70"))

# SUSPECT_AGE is now a factor that we reordered!

age_releveled %>% count(SUSPECT_AGE)

# A tibble: 8 x 2

SUSPECT_AGE     n

<fct>       <int>

1 UNDER 18     1068

2 18-25        2652

3 26-30        1724

4 31-40        2031

5 41-50         899

6 51-60         418

7 61-70         137

8 OVER 70        33



RECODE LEVELS WITH fct_recode()

age_recoded <- age_releveled %>% 

mutate(

SUSPECT_AGE = fct_recode(

SUSPECT_AGE,

#  new = old

"< 18" = "UNDER 18",

"> 70" = "OVER 70"

)

)



YOUR TURN!

Using our crimes data set, fill in the blanks (in the provided R script) to:
1. Create a variable called suspect_generation where the suspect’s age

• From zero to 18 is “student”
• From 18 to 60 is “working_adult”
• 60+ is “retired”

2. Reorder the suspect_generation variable in student/working_adult/retired 
order

3. Make a bar chart to show the distribution of the suspect_generation variable



SOLUTION
crime %>% 

mutate(suspect_generation = case_when(SUSPECT_AGE == "UNDER 18" ~ "student",

SUSPECT_AGE == "OVER 70"  ~ "retired",

is.na(SUSPECT_AGE)        ~ NA_character_,

TRUE                      ~ "working_adult"),

suspect_generation = fct_relevel(suspect_generation,

"student", "working_adult", "retired")) %>% 

ggplot(aes(x = suspect_generation)) +

geom_bar() +

labs(x = "Suspect Generation",

y = "Frequency") +

coord_flip() +

theme_minimal()



SOLUTION



COLLAPSE FACTORS WITH fct_collapse()

There are 7 distinct values 
for DAYOFWEEK…
crime %>% 

distinct(DAYOFWEEK)

# A tibble: 8 x 1

DAYOFWEEK

<chr>    

1 SATURDAY 

2 THURSDAY 

3 TUESDAY  

4 WEDNESDAY

5 SUNDAY   

6 FRIDAY   

7 MONDAY   

8 NA 

day <- crime %>% 

mutate(

type_of_day = fct_collapse(

DAYOFWEEK,

weekday = c("MONDAY", "TUESDAY",

"WEDNESDAY", "THURSDAY",

"FRIDAY"),

weekend = c("SATURDAY", "SUNDAY")

),

# give missing values an explicit factor level

# ensure they appear in summaries and on plots

type_of_day = fct_explicit_na(type_of_day)

)

…but we can collapse these into 2 levels.



COLLAPSE FACTORS WITH fct_collapse()

Our new graph reflects the 
changed levels!
day %>% count(type_of_day)

# A tibble: 3 x 2

type_of_day n

<fct>       <int>

1 weekday     14982

2 weekend      5808

3 (Missing)     363



TEMPORARILY REORDER FACTORS

Place certain forcats functions inside ggplot() calls to 
temporarily reorder factors without permanently 
altering levels.

crime %>% 

distinct(DAYOFWEEK)

# A tibble: 8 x 1

DAYOFWEEK

<chr>    

1 SATURDAY 

2 THURSDAY 

3 TUESDAY  

4 WEDNESDAY

5 SUNDAY   

6 FRIDAY   

7 MONDAY   

8 NA 

day %>% 

ggplot(aes(x = fct_infreq(type_of_day))) +

geom_bar() +

coord_flip()

fct_infreq() orders by frequency



TEMPORARILY REORDER FACTORS

Place certain forcats functions inside ggplot() calls to 
temporarily reorder factors without permanently 
altering levels.

crime %>% 

distinct(DAYOFWEEK)

# A tibble: 8 x 1

DAYOFWEEK

<chr>    

1 SATURDAY 

2 THURSDAY 

3 TUESDAY  

4 WEDNESDAY

5 SUNDAY   

6 FRIDAY   

7 MONDAY   

8 NA 

day %>% 

ggplot(aes(x = fct_rev(type_of_day))) +

geom_bar() +

coord_flip()

fct_rev() reverses the order of 
factor levels



YOUR TURN!

Using our crimes data set and the VICTIM_GENDER variable, fill in the blanks 
(in the provided R script) to:

1. Give missing values an explicit factor level so they appear in summaries and 
on plots.

2. Collapse factor levels into “female”, “male”, “non_person”, and 
“not_reported”.

3. Count the number of victim per reported gender.
4. Use fct_reorder() to make a plot (read documentation!).



SOLUTION
crime %>% 

transmute(

VICTIM_GENDER = fct_explicit_na(VICTIM_GENDER), 

VICTIM_GENDER = fct_collapse(

VICTIM_GENDER,

female = c("FEMALE", "F - FEMALE"),

male = c("MALE", "M - MALE"),

non_person = "NON-PERSON (BUSINESS",

not_reported = c("(Missing)", "UNKNOWN")

)

) %>%

count(VICTIM_GENDER) %>% 

ggplot(aes(x = fct_reorder(VICTIM_GENDER, n),

y = n)) +

geom_col() +

labs(x = NULL,

y = "Frequency")



FOR MORE INFORMATION

https://forcats.tidyverse.org/

https://forcats.tidyverse.org/


03/ DATES AND 
TIMES



lubridate FUNCTIONS AND COMMON TASKS

Sorry, but lubridate functions don’t 
have a common prefix.

Common tasks we’re covering

• Parse strings into dates/times

• Extract components of dates

• Adding/subtracting periods and 
durations

• … and more (that we’re not 
covering)



CREATING DATE/TIME VALUES AND VARIABLES

Parse strings into dates and 
times (letters dictate order) 
with functions like these:

• ymd()

• dmy_h()

• ydm_hm()

• mdy_hms()

… and many more functions!

# year, month, day

ymd("2019-08-20")

[1] "2019-08-20“

# some parsing functions allow unquoted numbers

ymd(20190820)

[1] "2019-08-20”

# day, month, year, hour

dmy_h("20/08/2019 14")

[1] "2019-08-20 14:00:00 UTC“

# year, day, month, hour, minute

ydm_hm("2019/20/08 07:20")

[1] "2019-08-20 07:20:00 UTC“

# month, day, year, hour, minute, second

mdy_hms("August 20, 2019 10:12:32")

[1] "2019-08-20 10:12:32 UTC"

lubridate handles many string formats!



EXTRACT COMPONENTS OF DATES

Boolean components

# check if datetime in am

am("2019-08-20 17:00:00")

[1] FALSE

# check for daylight savings time

dst(now())

[1] FALSE

# check for leap year (requires date input)

x <- as_date("2019-08-20")

leap_year(x)

[1] FALSE

# extract year

year("2019-08-20")

[1] 2019

# extract full weekday name

wday("2019-08-20", label = TRUE, abbr = TRUE)

[1] Tue

Levels: Sun < Mon < Tue < Wed < Thu < Fri < Sat

# extract hour

hour("2019-08-20 02:42")

[1] 2

# extract calendar year quarter

quarter("2019-08-20")

[1] 3

Numeric components



YOUR TURN!

The Cincinnati Police Department has a question:
Do certain months have more victims than other months? 

Using our crimes data set, fill in the blanks and asterisks (in the provided R 
script) and read the comments to answer this question.



SOLUTION

crime %>% 

# convert the DATE_REPORTED variable into

# a datetime variable showing the month, day, year, hour, minute

mutate(DATE_REPORTED = mdy_hm(DATE_REPORTED),

# create a month variable by extracting the month

# from the DATE_REPORTED variable

month = month(DATE_REPORTED)) %>% 

# what should you group by?

group_by(month) %>% 

# we need a total_victims statistic

summarize(total_victims = sum(TOTALNUMBERVICTIMS, na.rm = TRUE)) %>% 

# create a line graph to show change over time

ggplot(aes(x = month, y = total_victims)) +

geom_line()



SOLUTION



DURATIONS
How old is Surge?  R stores this calculation 
as a difftime object with the attribute naming 
the units.

# Thanks Wikipedia!

(surge_age <- today() - ymd(19970727))

Time difference of 8148 days

as.duration(surge_age)

[1] "703987200s (~22.31 years)"

lubridate can store this information as a duration
which always uses seconds, avoiding ambiguity 
with different time units.



WORKING WITH DURATIONS

Function to create durations
(they all begin with d)

dseconds(20)

[1] "20s"

dminutes(c(11, 525600))

[1] "660s (~11 minutes)"      

[2] "31536000s (~52.14 weeks)"

dweeks(1:4)

[1] "604800s (~1 weeks)"  "1209600s (~2 weeks)"

[3] "1814400s (~3 weeks)" "2419200s (~4 weeks)"

3 * dhours(1)

[1] "10800s (~3 hours)"

dyears(2) + dweeks(3) + dhours(1)

[1] "64890000s (~2.06 years)"

Add and multiply durations

Add and subtract durations involving 
days
today() - dyears(2)

[1] "2017-11-18"

… and many more functions!



WHERE DURATIONS FAIL US

Leap years
(five_somewhere <- ymd_hms("2016-01-01 17:00:00"))

[1] "2016-01-01 17:00:00 UTC"

five_somewhere + dyears(1)

[1] "2016-12-31 17:00:00 UTC"

Daylight saving time
(hashtag_fall <- ymd_hms("2019-11-02 15:00:00", tz = "America/New_York"))

[1] "2019-11-02 15:00:00 EDT"

hashtag_fall + ddays(1)

[1] "2019-11-03 14:00:00 EST"



PERIODS TO SAVE THE DAY

lubridate also uses periods—time spans that are not fixed lengths but work with “human” times
hashtag_fall

[1] "2019-11-02 15:00:00 EDT"

hashtag_fall + days(1)

[1] "2019-11-03 15:00:00 EST"

Examples of creating periods (no common prefix)

seconds(20)

[1] "20S"

minutes(c(11, 525600))

[1] "11M 0S"     "525600M 0S"

weeks(1:4)

[1] "7d 0H 0M 0S"  "14d 0H 0M 0S" "21d 0H 0M 0S" "28d 0H 0M 0S"



ADDING AND MULTIPLYING PERIODS

Add and multiply periods

4 * (years(2) + minutes(3))

[1] "8y 0m 0d 0H 12M 0S"

days(6) + minutes(600) + seconds(3)

[1] "6d 0H 600M 3S"

# leap year

five_somewhere + dyears(1)

[1] "2016-12-31 17:00:00 UTC"

five_somewhere + years(1)

[1] "2017-01-01 17:00:00 UTC"

# daylight saving time

hashtag_fall + ddays(1)

[1] "2019-11-03 14:00:00 EST"

hashtag_fall + days(1)

[1] "2019-11-03 15:00:00 EST"

Add periods to dates



FOR MORE INFORMATION

Other tasks with lubridate:

• Accounting for and changing 
time zones

• Determining if two time
intervals overlap

https://lubridate.tidyverse.org/

https://lubridate.tidyverse.org/




FOR THE REST OF TODAY…

Spend the last 30-45 minutes of today’s class session working 
through the Session 4 Midterm Project .pdf file with your group 
members.


